

Inferring global-scale spatio-temporal $\delta^{18}O_{p}$ patterns from local datasets

Georgy Falster^{1*}, Bronwen Konecky¹, Midhun Madhavan^{2,3}, Samantha Stevenson², Sloan Coats⁴

Background & Aims

The abundance of publicly-available precipitation $\delta^{18}O(\delta^{18}O_{p})$ data allows analysis of **global-scale** δ^{18} **O**, **patterns**. Most such meta-analyses focus on static **spatial** $\delta^{18}O_{p}$ patterns.

Characterising global-scale $\delta^{18}O_{p}$ variability **through time** is more difficult. $\delta^{18}O_{p}$ data availability is spatially & temporally irregular, as shown on the plot below which summarises the temporal coverage of publicly-available $\delta^{18}O_{p}$ station data.

Here we aim to characterise both the spatial and temporal variability in **global** $\delta^{18}O_{P}$, using data from GNIP and the Water Isotopes Database.

Methods

We grouped $\delta^{18}O_{p}$ stations into clusters based on geographic & climatic parameters. The map to the right shows $\delta^{18}O_{\rm p}$ stations coloured according to their assigned cluster (52 clusters total).

We used a novel 'dynamic compositing' method to combine all records in each cluster into a single timeseries, without spurious jumps in mean or variance.

From those 52 clusters we kept only the **16 regional** $\delta^{18}O_{\rm p}$ composites with >80 % temporal coverage from 1982 to 2015.

We found the common gradient underlying these regional $\delta^{18}O_{p}$ composites (global $\delta^{18}O_{p}$ PC1 & EOF1, at annual resolution), and did the same on simulations from the isotope-enabled CESM for comparison.

We then compared the global $\delta^{18}O_{\rm p}$ PC1 with globally-relevant climate indices.

Results

Orange: positive loading on PC1. Purple: negative loading on PC1

The three maps below show the correlation of global $\delta^{18}O_{p}$ PC1 with climatic variables (sea level pressure, precipitation, and near-surface winds).

Purple & orange **points** on the map to the left show the loading of regional $\delta^{18}O_{p}$ composites on the global $\delta^{18}O_{p}$ PC1 i.e. as PC1 increases, $\delta^{18}O_{\rm p}$ at purple-coloured sites decreases & $\delta^{18}O_{\rm p}$ at orange-coloured sites increases.

Small grey circles show the individual sites comprising the regional $\delta^{18}O_{P}$ composites.

The **background grid** shows $\delta^{18}O_{p}$ EOF1 from the isotope-enabled CESM.

Precipitation amount

Discussion

The table below shows the **correlation** of global $\delta^{18}O_{P}$ PC1 with globally-relevant climatic indices

Tropical Pacific atmospheric variability	PWC (ΔSLP)	SOI	
	0.74*	0.70*	
Tropical Pacific oceanic variability	Niño 3.4	EMI	
	-0.58*	-0.44*	
Variability outside the tropical Pacific	PMM	SAM	DMI
	-0.33	0.24	-0.03

PWC = Pacific Walker Circulation (as defined by trans-Pacific SLP gradient), SOI = Southern Oscillation Index, EMI = ENSO-Modoki Index, PMM = Pacific Meridional Mode, SAM = Southern Annular Mode, DMI = Dipole Mode Index. Asterisk denotes significant correlation

Global $\delta^{18}O_{P}$ PC1 is most strongly correlated with the strength of the **Pacific Walker** Circulation.

We see similar isotope-climate relationships in observations & the iCESM, suggesting both that iCESM accurately models $\delta^{18}O_{\rm p}$ patterns, & that our 16 regional $\delta^{18}O_{\rm p}$ composites capture a **realistic approximation** of spatio-temporal changes in global $\delta^{18}O_{p}$.

Our methodology could also be used to synthesise regional-scale $\delta^{18}O_{P}$ variability from local $\delta^{18}O_{p}$ data, or to analyse $\delta^{18}O_{p}$ variability in different time periods.

For all the details, see our recent paper (open access): https://tinyurl.com/falster2021

Affiliations & Contact Info

*Email: georgina.falster@gmail.com

🥑 @raindrop_herder

¹Washington University in St. Louis, USA ²University of California, Santa Barbara, USA ³University of Michigan, USA ⁴University of Hawai'i at Manoa, USA

